Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 99, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429804

RESUMO

BACKGROUND: Soil-transmitted helminths (STH) infect more than a quarter of the world's human population. In the absence of vaccines for most animal and human gastrointestinal nematodes (GIN), treatment of infections primarily relies on anthelmintic drugs, while resistance is a growing threat. Therefore, there is a need to find alternatives to current anthelmintic drugs, especially those with novel modes of action. The present work aimed to study the composition and anthelmintic activity of Combretum mucronatum leaf extract (CMLE) by phytochemical analysis and larval migration inhibition assays, respectively. METHODS: Combretum mucronatum leaves were defatted with petroleum ether and the residue was extracted by ethanol/water (1/1) followed by freeze-drying. The proanthocyanidins and flavonoids were characterized by thin layer chromatography (TLC) and ultra-high performance liquid chromatography (UPLC). To evaluate the inhibitory activity of this extract, larval migration assays with STH and GIN were performed. For this purpose, infective larvae of the helminths were, if necessary, exsheathed (Ancylostoma caninum, GIN) and incubated with different concentrations of CMLE. RESULTS: CMLE was found to be rich in flavonoids and proanthocyanidins; catechin and epicatechin were therefore quantified for standardization of the extract. Data indicate that CMLE had a significant effect on larval migration. The effect was dose-dependent and higher concentrations (1000 µg/mL) exerted significantly higher larvicidal effect (P < 0.001) compared with the negative control (1% dimethyl sulfoxide, DMSO) and lower concentrations (≤ 100 µg/ml). Infective larvae of Ascaris suum [half-maximal inhibitory concentration (IC50) = 5.5 µg/mL], Trichuris suis (IC50 = 7.4 µg/mL), and A. caninum (IC50 = 18.9 µg/mL) were more sensitive to CMLE than that of Toxocara canis (IC50 = 310.0 µg/mL), while infective larvae of Toxocara cati were largely unaffected (IC50 > 1000 µg/mL). Likewise, CMLE was active against most infective larvae of soil-transmitted ruminant GIN, except for Cooperia punctata. Trichostrongylus colubriformis was most sensitive to CMLE (IC50 = 2.1 µg/mL) followed by Cooperia oncophora (IC50 = 27.6 µg/mL), Ostertagia ostertagi (IC50 = 48.5 µg/mL), Trichostrongylus axei (IC50 = 54.7 µg/mL), Haemonchus contortus (IC50 = 145.6 µg/mL), and Cooperia curticei (IC50 = 156.6 µg/mL). CONCLUSIONS: These results indicate that CMLE exhibits promising anthelmintic properties against infective larvae of a large variety of soil-transmitted nematodes.


Assuntos
Anti-Helmínticos , Combretum , Helmintos , Nematoides , Proantocianidinas , Trichostrongyloidea , Animais , Humanos , Combretum/química , Proantocianidinas/farmacologia , Proantocianidinas/química , Larva , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Helmínticos/farmacologia , Ruminantes , Flavonoides/farmacologia , Compostos Fitoquímicos/farmacologia
2.
J Parasitol Res ; 2024: 2119056, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328477

RESUMO

Aim: Onchocerciasis is an endemic parasitic disease in sub-Saharan Africa that significantly impacts animal and human health. In Northern Cameroon, medicinal plants from the Combretum genus are used for onchocerciasis traditional treatment although there is no scientific evidence of their antifilarial potential. This study evaluates the in vitro macro- and microfilaricidal properties of water extracts from Combretum nigricans in Onchocerca ochengi. Material and Methods. O. ochengi microfilariae and adult male worms were recovered from cowhide fragments. Oxidative stress indicators and motility tests were used to assess the filaricidal impact. Female albino rats were used to test for acute toxicity. The contents of secondary metabolites were quantified. Results: The bark aqueous extract was more active on macrofilariae at 1 mg/mL for 24 h (100%) than the leaf (63.9%) and root (75%) extracts at the same concentration. Likewise, a stronger microfilaricidal effect was found with this extract at 0.5 mg/mL for 1 h (100%) compared to root and leaf extracts. The dose-response effect with the bark extract gave an inhibitory concentration 50 (IC50) of 351 µg/mL vs. 113 µg/mL for flubendazole after 24 h incubation, while the microfilaricidal efficacy revealed an IC50 of 158.7 µg/mL vs. 54.09 µg/mL for ivermectin after one-hour incubation. Examining stress indicators on parasite homogenates showed that macrofilaricidal activity is associated with a significant increase in nitric oxide, glutathione, and malondialdehyde generation and a decrease in catalase activity. At 2000 mg/kg, rats showed no harm. The phytochemical investigation revealed that the barks contained more phenolic acids, condensed tannins, flavonoids, and saponins than the leaves (p < 0.001). Conclusion: These findings support C. nigricans' antifilarial activity and identify oxidative stress indicators as prospective treatment targets in O. ochengi. It would be interesting to conduct in vivo studies to understand their antifilarial activity better.

3.
Acta Parasitol ; 68(3): 566-581, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336863

RESUMO

PURPOSE: Onchocerciasis is a neglected tropical disease that remains endemic in sub-Saharan African countries. Unfortunately, only a few microfilaricidal agents have been approved so far. This study aimed to assess the in vitro macro and microfilaricidal potentialities of the hydro-methanolic extracts of the different powdery fractions of Khaya senegalensis against Onchocerca ochengi. METHODS: Adult male worms and microfilariae (mf) of O. ochengi were isolated from cowhides in Ngaoundere II, Cameroon. Parasites were incubated for 4 h (mf) or 48 h (adult worms) in RPMI-1640 medium in the presence or absence of ivermectin, flubendazole, or hydro-methanolic extracts of different plant powdery fractions obtained by controlled differential sieving. The filaricidal effect was evaluated using motility (mfs) and mortality tests (worms) and oxidative stress parameters. Cytotoxicity and acute toxicity tests were performed on monkey-derived kidney cell lines (LLC-MK2) and Swiss albino mice, respectively, and selectivity indexes were determined. Phytochemical screening was also carried out using high-performance liquid chromatography/UV (HPLC/UV), molecular networking, and through quantification of phenolic contents. RESULTS: The hydro-methanolic extracts of 0-63 µm fractions from leaves and barks exhibited the strongest macrofilaricidal activities with lethal concentrations 50 of 162.4 and 208.8 µg/mL respectively versus 22.78 µg/mL for flubendazole. These two fractions also showed the fastest microfilaricidal activities (T1/2 of 1 h), although it was low when compared to ivermectin (T1/2 < 1 h). Their macrofilaricidal effects were accompanied by a significant inhibition of nitric oxide secretion and a significant increase of glutathione and catalase activity compared to the untreated group. However, no effect was found on superoxide dismutase activity, the GABAergic and glutamatergic receptors. Although neither extract was toxic to Swiss mice until a dose of 2000 mg/kg body weight, the 0-63 µm leaf fraction hydro-methanolic extract was selectively more effective on worms than bark extract (SI = 1.28 versus 0.34). Both extracts were found to contain some flavonoids including procyanidin-, rutin-, myricetin-, and naringenin derivatives as well as new unknown compounds. However, the total polyphenol, flavonoid and tannin contents of the leaf extract were significantly greater (P < 0.05) than that of the bark extract. CONCLUSION: These results support the anti-filarial effect of K. senegalensis leaves and highlight stress oxidative markers as new therapeutic targets in O. ochengi. Further, in vivo experiments are required in understanding their anti-parasitic properties, and testing combinations of fine fractions.


Assuntos
Meliaceae , Onchocerca , Camundongos , Animais , Ivermectina/farmacologia , Extratos Vegetais , Metanol/farmacologia
4.
Dose Response ; 21(2): 15593258231185460, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359127

RESUMO

Background: S. setigera is widely used in traditional medicine throughout the world. Ethnobotanical surveys have revealed its use to handle diabetes. This present research investigated the antioxidant potential and improvement activities of S. setigera Delile on insulin resistance in type 2 diabetic rats. Methods: Male rats fed high-fat diet for 6 weeks followed by a single-dose intraperitoneal injection of streptozotocin (35 mg/kg) induced hyperglycemia. 72 hours after injection of streptozotocin, diabetic rats received treatment for 21 days. Fasting blood glucose was measured. Serum biochemical and hepatic biomarkers were evaluated. A hepatic histological study was performed. Oxidative stress biomarkers were assessed in liver. Results: Doses of 200 and 400 mg/kg reduced the blood glucose with the reduction index of 53.75 and 62.1%, respectively. There was also good improvement in lipid profile and insulin. The dose of 400 mg/kg better reduced subcutaneous fat mass with a difference in reduction index (1.5 to 5.8%). The extract resulted in a decrease in malondialdehyde levels and an increase in catalase activities. The extract showed significant inhibitory potential towards α-amylase 18.78% to 55.91% and α-glucosidase 23.91% to 67.76%. Conclusion: S. setigera extract could thus reverse insulin resistance and oxidative stress in type 2 diabetic rats induced.

5.
Dose Response ; 21(1): 15593258221148015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743195

RESUMO

Gout is a metabolic arthritis that originates from increased accumulation of monosodium urate (MSU) crystals in joints. This work aimed to evaluate the antioxidant and anti-inflammatory activities of the hydromethanolic extract of Gnidia kraussiana (HEGK) using model of Gouty arthritis on mice. The total polyphenol, flavonoid, tannin content and the antioxidant activity of HEGK were also evaluated. MSU-injected mice were treated daily for 3 days with HEGK (25, 50 and 100 mg/kg). Indomethacin and colchicin were used as reference drugs. Paw oedema and body temperature were measured at different time intervals post-injection. Malondialdehyde, acid phosphatase, ß-Galactosidase, catalase, superoxide dismutase and glutathione levels were evaluated. HEGK is rich in polyphenol (129.93 mg/100 g), flavonoid (67.78 mg/100 g) and tannin conferring it a high antioxidant activity. Acute oral toxicity of HEGK resulted in LD50 greater than 2000 mg/kg. Oral administration of HEGK induced a significant decrease in the oedema of legs injected with urate crystals and reduced the release of acid phosphatase and ß-Galactosidase. A model of oxidative damage was successfully established, revealing a significant increase in malondialdehyde and inhibition of antioxidants, including superoxide dismutase, catalase and glutathione activity. Thus, HEGK can actively inhibit the effect of inflammatory mediators in gouty arthritis.

6.
J Parasitol Res ; 2022: 7828551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36254217

RESUMO

Onchocerciasis is a major public health problem caused by Onchocerca volvulus parasite and transmitted to humans via black flies (simulium) bites. The control of onchocerciasis relies much on the use of the chemical drug ivermectin, which is only effective against microfilariae and has led to drug resistance. This study was carried out to assess the in vitro antifilarial activity of methanolic extract of Indigofera tinctoria and its most active fractions on adult male O. ochengi worm, the closest model to O. volvulus, after 48 h and 72 h of treatment. Worms' viability was determined biochemically by MTT/formazan colorimetry assay. The promising plant extract's acute and subacute oral toxicity were evaluated on both mice and rats. The result revealed a highest antifilarial activity of the methanolic extract (LC50 = 12.28 µg/mL) compared to ivermectin (LC50 = 26.50 µg/mL) after 72 h of treatment. Out of the eight (08), chromatographic fractions screened, only three (03) fractions (C, F, and G) revealed the highest anti-Onchocerca activity after 72 h of treatment. An oral administration of the plant extract at a single dose of 2000 mg/kg did not produce any toxicity in mice. After repeated daily administration of methanolic extract of I. tinctoria (250 mg/kg, 500 mg/kg, and 1000 mg/kg) for 28 days, no significant changes in body weight, biochemical, and haematological parameters was observed. Histopathological examination of organs did not reveal any sign of alteration. The phytochemical analysis of the methanolic extract of I. tinctoria revealed the presence of various phenolic compounds. Therefore, this study demonstrated the potential antifilarial activity of Indigofera tinctoria and offered an alternative to treating onchocerciasis. Moreover, further studies could be developed in promising new antifilarial sources of the isolated compound and in vivo antifilarial activity of Indigofera tinctoria in the animal model needs to be studied.

8.
BMC Microbiol ; 21(1): 5, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407120

RESUMO

BACKGROUND: During the last two decades research on animal filarial parasites, especially Onchocerca ochengi, infecting cattle in savanna areas of Africa revealed that O. ochengi as an animal model has biological features that are similar to those of O. volvulus, the aetiological agent of human onchocerciasis. There is, however, a paucity of biochemical, immunological and pathological data for O. ochengi. Galectins can be generated by parasites and their hosts. They are multifunctional molecules affecting the interaction between filarial parasites and their mammalian hosts including immune responses. This study characterized O. ochengi galectin, verified its immunologenicity and established its immune reactivity and that of Onchocerca volvulus galectin. RESULTS: The phylogenetic analysis showed the high degree of identity between the identified O. ochengi and the O. volvulus galectin-1 (ß-galactoside-binding protein-1) consisting only in one exchange of alanine for serine. O. ochengi galectin induced IgG antibodies during 28 days after immunization of Wistar rats. IgG from O. ochengi-infected cattle and O. volvulus-infected humans cross-reacted with the corresponding galectins. Under the applied experimental conditions in a cell proliferation test, O. ochengi galectin failed to significantly stimulate peripheral blood mononuclear cells (PBMCs) from O. ochengi-infected cattle, regardless of their parasite load. CONCLUSION: An O. ochengi galectin gene was identified and the recombinantly expressed protein was immunogenic. IgG from Onchocerca-infected humans and cattle showed similar cross-reaction with both respective galectins. The present findings reflect the phylogenetic relationship between the two parasites and endorse the appropriateness of the cattle O. ochengi model for O. volvulus infection research.


Assuntos
Galectinas/administração & dosagem , Galectinas/genética , Imunoglobulina G/sangue , Leucócitos Mononucleares/imunologia , Onchocerca/imunologia , Animais , Bovinos , Clonagem Molecular/métodos , Feminino , Galectinas/imunologia , Perfilação da Expressão Gênica , Proteínas de Helminto/administração & dosagem , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Humanos , Imunização , Leucócitos Mononucleares/parasitologia , Onchocerca/genética , Filogenia , Ratos , Ratos Wistar , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Análise de Sequência de DNA
9.
BMC Vet Res ; 15(1): 344, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619238

RESUMO

BACKGROUND: African animal trypanosomosis remains the major constraint of livestock production and livelihood of pastoral communities in Cameroon. Despite several decades of vector and parasite control efforts, it has not been eradicated. Alternative and sustainable control strategies require a sound knowledge of the local species, strains and vectors. In the Sudano-Sahelian and Guinea Savannah of Cameroon the prevalence and genetic diversity of trypanosomes infecting cattle was investigated by microscopy of cattle blood buffy coat and molecular methods using generic primers targeting parts of the internal transcribed spacer 1 (ITS-1) and encoded glycosomal glyceraldehyde 3-phosphate dehydrogenase-gene (gGAPDH). RESULTS: A total of 1176 randomly chosen cattle from five divisions in the Sudano-Sahelian and Guinea Savannah of Cameroon were examined. The overall prevalence of trypanosomes by microscopy was 5.9% (56/953) in contrast to 53.2% (626/1176) when molecular tools were used. This indicated a limited sensitivity of microscopy in subclinical infections with frequently low parasitemia. Three trypanosome species were identified by light microscopy: T. vivax (2.3%), T. brucei (3.7%) and T. congolense (3.0%), whereas five were identified by PCR, namely T. grayi/T. theileri (30.8%), T. vivax (17.7%), T. brucei (14.5%) and T. congolense (5.1%). Unexpected cases of T. grayi (n = 4) and T. theileri (n = 26) were confirmed by sequencing. Phylogenetic analysis of the gGAPDH revealed the presence of T. vivax, clade A and T. vivax clade C, which were co-endemic in the Faro et Deo division. T. grayi/T. theileri were the predominant species infecting cattle in tsetse free areas. In contrast, T. vivax, T. brucei and T. congolense were more abundant in areas where the Glossina-vectors were present. CONCLUSIONS: The abundance of pathogenic trypanosomes in tsetse infested areas is alarming and even more, the occurrence of T. vivax, T. brucei, T. congolense, T. theileri and T. grayi in tsetse-free areas implies that tsetse control alone is not sufficient to control trypanosomosis in livestock. To implement control measures that reduce the risk of spread in tsetse free areas, close monitoring using molecular tools and a thorough search for alternative vectors of trypanosomes is recommended.


Assuntos
Doenças dos Bovinos/epidemiologia , Trypanosoma/isolamento & purificação , Tripanossomíase Africana/epidemiologia , Animais , Buffy Coat/parasitologia , Camarões/epidemiologia , Bovinos , Doenças dos Bovinos/parasitologia , Feminino , Genes de Protozoários , Insetos Vetores , Masculino , Prevalência , Trypanosoma/classificação , Trypanosoma/genética , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé
10.
J Med Virol ; 91(6): 928-934, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30822356

RESUMO

Rubella is an acute and contagious viral infection whose gravidity resides in infection during pregnancy, which can result in miscarriage, fetal death, stillbirth, or infants with congenital malformations. This study aimed to describe the genome of rubella viruses (RUBVs) circulating in Cameroon. Throat swabs were collected from health districts as part of the measles surveillance program from 2010 to 2016 and sent to the Centre Pasteur of Cameroon. Samples were amplified by genotyping reverse transcription polymerase chain reaction (RT-PCR) in the search of two overlapping fragments of the gene that encodes the E1 envelope glycoprotein of RUBV. PCR products were sequenced and phylogenetic analysis was performed with MEGA 6 software. Overall, 9 of 43 samples (20.93%) were successfully amplified and sequenced but only eight sequences could be exploited for phylogenetic analysis with respect to the required fragment length of 739 nucleotides. Analysis of viral sequences from Cameroon with other epidemiologically relevant sequences from around the world showed that all RUBVs belonged to lineage L1 of genotype 1G. Cameroon sequences clustered with viruses from West Africa including Nigeria, Ivory Coast, and Ghana with a percentage similarity of 95.4% to 99.2%. This study will enable an update on the molecular epidemiology of RUBV in Cameroon and help in monitoring circulating RUBV for a better implementation of elimination strategies.


Assuntos
Genoma Viral , Vírus da Rubéola/genética , Rubéola (Sarampo Alemão)/epidemiologia , África/epidemiologia , Camarões/epidemiologia , Criança , Pré-Escolar , Análise por Conglomerados , Evolução Molecular , Feminino , Genômica , Genótipo , Humanos , Masculino , Filogenia , RNA Viral/genética , Análise de Sequência de DNA
11.
Parasitol Res ; 117(9): 2697-2713, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30008135

RESUMO

Onchocerciasis is a filarial vector borne disease which affects several million people mostly in Africa. The therapeutic approach of its control was based on a succession of drugs which always showed limits. The last one: ivermectin is not the least. It was shown to be only microfilaricidal and induced resistance to the human parasite Onchocerca volvulus. The approach using medicinal plants used in traditional medicine is a possible alternative method to cure onchocerciasis. Onchocerca ochengi and Onchocerca gutturosa are the parasite models used to assess anthelmintic activity of potentially anthelmintic plants. Numerous studies assessed the in vitro and/or in vivo anthelmintic activity of medicinal plants. Online electronic databases were consulted to gather publications on in vitro and in vivo studies of anti-Onchocerca activity of plants from 1990 to 2017. Globally, 13 plant families were investigated for anti-Onchocerca activity in 13 studies. The most active species were Anacardium occidentale, Euphorbia hirta and Acacia nilotica each with an LC50 value of 2.76, 6.25 and 1.2 µg/mL, respectively. Polycarpol, voacamine, voacangine, ellagic acid, gallic acid, gentisic acid, 3-O-acetyl aleuritolic acid and (-)-epigallocatechin 3-O-gallate were the isolated plant compounds with anti-Onchocerca activity. Most of the assessed extract/compounds showed a good safety after in vivo acute toxicity assays and/or in vitro cytotoxicity test. The exception was the ethanol extract of Trichilia emetica, which killed completely and drastically mice at a dose of 3000 mg/kg. Several plant groups of compounds were shown active against Onchocerca sp. such as tannins, alkaloids, triterpenoids and essential oils. Nevertheless, none of the active compounds was subjected to clinical trial, to assessment of its diffusibility through nodular wall or its capability to induce genetic resistance of Onchocerca sp.


Assuntos
Anti-Helmínticos/farmacologia , Onchocerca volvulus/efeitos dos fármacos , Oncocercose/tratamento farmacológico , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Acacia/química , África , Anacardium/química , Animais , Euphorbia/química , Humanos , Ivermectina/farmacologia , Onchocerca volvulus/isolamento & purificação , Oncocercose/parasitologia , Taninos/análise
12.
BMC Infect Dis ; 18(1): 200, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29716541

RESUMO

BACKGROUND: The front line molecules from filarial worms and other nematodes or helminthes are their Excretory-Secretory (ES) products. Their interaction with the host cells, proteins and immune system accounts for the skin and eye pathology or hyposensitivity observed in human onchocerciasis. ES products and adult worms' crude extracts from Onchocerca ochengi, a filarial nematode that infects the African zebu cattle, were utilized in the present study as a model for studying Onchocerca volvulus that causes river blindness in man. METHODS: The ES products were generated from adult male and female worms in vitro and analyzed with poly acrylamide gel electrophoresis (PAGE) and enzyme-linked immunosorbent assay (ELISA) using sera from Onchocerca-infected cattle and humans. The cattle sera were collected from a herd that had been exposed for six years to natural transmission of Onchocerca spp. The expressed reactivity was evaluated and differences analyzed statistically using Kruskal-Wallis rank and Chi-square tests. RESULTS: The gel electrophoretic analyses of 156 ES products from O. ochengi female and male worms and of two somatic extracts from three females and 25 males revealed differences in the protein pattern showing pronounced bands at 15, 30-50 and 75 kDa for male ES proteins and 15, 25 and 40-75 kDa for somatic extracts, respectively and less than 100 kDa for female worms. Proteins in the ES products and somatic extracts from female and male Onchocerca ochengi worms were recognized by IgG in sera from both Onchocerca-exposed cattle and humans. Bovine serum antibodies reacted more strongly with proteins in the somatic extracts than with those in the ES products. Interestingly, the reaction was higher with male ES products than with ES products from female worms, suggesting that the males which migrate from one nodule to another are more exposed to the host immune system than the females which remain encapsulated in intradermal nodules. CONCLUSIONS: This study demonstrates that O. ochengi ES products and, in particular, extracts from male filariae may represent a good source of immunogenic proteins and potential vaccine candidates.


Assuntos
Proteínas de Helminto/imunologia , Interações Hospedeiro-Parasita/imunologia , Onchocerca/patogenicidade , Oncocercose/imunologia , Animais , Anticorpos Anti-Helmínticos/sangue , Anticorpos Anti-Helmínticos/imunologia , Bovinos , Doenças dos Bovinos/parasitologia , Ensaio de Imunoadsorção Enzimática , Feminino , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Humanos , Imunoglobulina G/análise , Masculino , Onchocerca/imunologia , Onchocerca volvulus/imunologia , Onchocerca volvulus/patogenicidade , Oncocercose/veterinária
13.
BMC Complement Altern Med ; 17(1): 404, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806951

RESUMO

BACKGROUND: Onchocerciasis is one of the tropical neglected diseases (NTDs) caused by the nematode Onchocerca volvulus. Control strategies currently in use rely on mass administration of ivermectin, which has marked activity against microfilariae. Furthermore, the development of resistance to ivermectin was observed. Since vaccine and safe macrofilaricidal treatment against onchocerciasis are still lacking, there is an urgent need to discover novel drugs. This study was undertaken to investigate the anthelmintic activity of Lophira lanceolata on the cattle parasite Onchocerca ochengi and the anthelmintic drug resistant strains of the free living nematode Caenorhabditis elegans and to determine the phytochemical profiles of the extracts and fractions of the plants. METHODS: Plant was extracted in ethanol or methanol-methylene chloride. O. ochengi, C. elegans wild-type and C. elegans drug resistant strains were cultured in RPMI-1640 and NGM-agar respectively. Drugs diluted in dimethylsulphoxide/RPMI or M9-Buffer were added in assays and monitored at 48 h and 72 h. Worm viability was determined by using the MTT/formazan colorimetric method. Polyphenol, tannin and flavonoid contents were determined by dosage of gallic acid and rutin. Acute oral toxicity was evaluated using Swiss albino mice. RESULTS: Ethanolic and methanolic-methylene chloride extracts killed O. ochengi with LC50 values of 9.76, 8.05, 6.39 µg/mL and 9.45, 7.95, 6.39 µg/mL respectively for leaves, trunk bark and root bark after 72 h. The lowest concentrations required to kill 50% of the wild-type of C. elegans were 1200 and 1890 µg/mL with ethanolic crude extract, 1000 and 2030 µg/mL with MeOH-CH2Cl2 for root bark and trunk bark of L. lanceolata, respectively after 72 h. Leave extracts of L. lanceolata are lethal to albendazole and ivermectin resistant strains of C. elegans after 72 h. Methanol/methylene chloride extracted more metabolites. Additionally, extracts could be considered relatively safe. CONCLUSION: Ethanolic and methanolic-methylene chloride crude extracts and fractions of L. lanceolata showed in vitro anthelmintic activity. The extracts and fractions contained polyphenols, tannins, flavonoids and saponins. The mechanism of action of this plant could be different from that of albendazole and ivermectin. These results confirm the use of L. lanceolata by traditional healers for the treatment of worm infections.


Assuntos
Anti-Helmínticos/farmacologia , Caenorhabditis elegans , Infecções por Nematoides/parasitologia , Ochnaceae/química , Onchocerca , Extratos Vegetais/farmacologia , Albendazol/farmacologia , Animais , Bovinos , Resistência a Medicamentos , Flavonoides/análise , Flavonoides/farmacologia , Ivermectina/farmacologia , Camundongos , Infecções por Nematoides/veterinária , Oncocercose/parasitologia , Oncocercose/veterinária , Fitoterapia , Casca de Planta , Extratos Vegetais/química , Raízes de Plantas , Caules de Planta , Polifenóis/análise , Polifenóis/farmacologia , Saponinas/análise , Saponinas/farmacologia , Taninos/análise , Taninos/farmacologia
14.
Molecules ; 22(5)2017 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-28481237

RESUMO

Acacia nilotica fruits with high tannin content are used in the northern parts of Cameroon as anti-filarial remedies by traditional healers. In this study, the hydro-alcoholic fruit extract (crude extract (CE)) and, one of the main constituents in its most active fractions, (+)-catechin-3-O-gallate (CG), as well as four related proanthocyanidins, (-)-epicatechin-3-O-gallate (ECG), (+)-gallocatechin (GC), (-)-epigallocatechin (EGC) and (-)-epigallocatechin-3-O-gallate (EGCG), were assessed for their potential in vitro anthelmintic properties against the free-living model organism Caenorhabditis elegans and against the cattle filarial parasite Onchocerca ochengi. Worms were incubated in the presence of different concentrations of fruit extract, fractions and pure compounds. The effects on mortality were monitored after 48 h. The plant extract and all of the pure tested compounds were active against O. ochengi (LC50 ranging from 1.2 to 11.5 µg/mL on males) and C. elegans (LC50 ranging from 33.8 to 350 µg/mL on wild type). While high LC50 were required for the effects of the compounds on C. elegans, very low LC50 were required against O. ochengi. Importantly, tests for acute oral toxicity (lowest dose: 10 mg/kg) in Wistar rats demonstrated that crude extract and pure compounds were non-toxic and safe to use. Additionally, the results of cytotoxicity tests with the Caco-2 cell line (CC50 ranging from 47.1 to 93.2 µg/mL) confirmed the absence of significant toxicity of the crude extract and pure compounds. These results are in good accordance with the use of A. nilotica against nematode infections by traditional healers, herdsmen and pastoralists in Cameroon.


Assuntos
Acacia/química , Caenorhabditis/efeitos dos fármacos , Onchocerca/efeitos dos fármacos , Proantocianidinas/química , Proantocianidinas/farmacologia , Álcoois/química , Animais , Anti-Helmínticos/química , Células CACO-2 , Caenorhabditis elegans , Catequina/análogos & derivados , Catequina/química , Bovinos , Frutas/química , Humanos , Masculino , Infecções por Nematoides/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Taninos/química , Cicatrização/efeitos dos fármacos
16.
Curr Med Chem ; 21(15): 1794-808, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24251574

RESUMO

Helminths that are the causative agents of numerous neglected tropical diseases continue to be a major problem for human global health. In the absence of vaccines, control relies solely on pharmacoprophylaxis and pharmacotherapy to reduce transmission and to relieve symptoms. There are only a few drugs available and resistance in helminths of lifestock has been observed to the same drugs that are also used to treat humans. Clearly there is an urgent need to find novel antiparasitic compounds. Not only are helminths confronted with their own metabolically derived toxic and redox-active byproducts but also with the production of reactive oxygen species (ROS) by the host immune system, adding to the overall oxidative burden of the parasite. Antioxidant enzymes of helminths have been identified as essential proteins, some of them biochemically distinct to their host counterpart and thus appealing drug targets. In this review we have selected a few enzymatic antioxidants of helminths that are thought to be druggable.


Assuntos
Anti-Helmínticos/farmacologia , Antioxidantes/farmacologia , Helmintíase/tratamento farmacológico , Helmintos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Anti-Helmínticos/uso terapêutico , Antioxidantes/uso terapêutico , Helmintíase/imunologia , Helmintíase/metabolismo , Humanos , Vacinação
17.
Parasitol Res ; 112(9): 3335-46, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23820606

RESUMO

The macrophage migration inhibitory factors (MIFs) from the filarial parasite Onchocerca volvulus (OvMIF) were compared to the MIFs from the free-living nematode Caenorhabditis elegans (CeMIF) with respect to molecular, biochemical and immunological properties. Except for CeMIF-4, all other MIFs demonstrated tautomerase activity. Surprisingly, OvMIF-1 displayed oxidoreductase activity. The strongest immunostaining for OvMIF-1 was observed in the outer cellular covering of the adult worm body, the syncytial hypodermis; moderate immunostaining was observed in the uterine wall. The generation of a strong humoral immune response towards OvMIF-1 and reduced reactivity to OvMIF-2 was indicated by high IgG levels in patients infected with O. volvulus and cows infected with the closely related Onchocerca ochengi, both MIFs revealing identical amino acid sequences. Using Litomosoides sigmodontis-infected mice, a laboratory model for filarial infection, MIFs derived from the tissue-dwelling O. volvulus, the rodent gut-dwelling Strongyloides ratti and from free-living C. elegans were recognized, suggesting that L. sigmodontis MIF-specific IgM and IgG1 were produced during L. sigmodontis infection of mice and cross-reacted with all MIF proteins tested. Thus, MIF apparently functions as a target of B cell response during nematode infection, but in the natural Onchocerca-specific human and bovine infection, the induced antibodies can discriminate between MIFs derived from parasitic or free-living nematodes.


Assuntos
Caenorhabditis elegans/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Onchocerca volvulus/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Anti-Helmínticos/biossíntese , Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Bovinos , Reações Cruzadas , Feminino , Filariose/imunologia , Filariose/parasitologia , Filarioidea/imunologia , Filarioidea/fisiologia , Humanos , Imunidade Humoral , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/imunologia , Fatores Inibidores da Migração de Macrófagos/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Onchocerca volvulus/genética , Onchocerca volvulus/imunologia , Oncocercose/imunologia , Oncocercose/parasitologia , Proteínas Recombinantes , Alinhamento de Sequência , Análise de Sequência de DNA , Sigmodontinae , Especificidade por Substrato
18.
Acta Trop ; 126(3): 167-76, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23474393

RESUMO

In eukaryotes, the key player in polyamine metabolism is the ornithine decarboxylase (ODC) that catalyses the first and rate limiting step in cellular polyamine synthesis. The half life of ODC is strictly regulated by the antizyme (AZ), which promotes its degradation. Older reports on the polyamine situation in filarial parasites indicate a lack of ornithine decarboxylation activity and an increased uptake of polyamines. Our in silico analysis of the Brugia malayi genome revealed only an ODC-like protein that lacks essential residues. Consequently, the recombinant protein had no enzymatic ODC activity. Furthermore, only ODC-like genes were found in the available draft genomes of other filarial parasites. In this ODC-free scenario, we set out to investigate the AZ of O. volvulus (OvAZ). The expression of the recombinant protein allowed us to analyse the localization of OvAZ in different O. volvulus stages as well as to identify it as target for the human humoral immune response. Strong immunostaining was observed in the outer zone of the uterine epithelium as well as in the uterus lumen around the periphery of the developing parasite, indicating a potential role of the OvAZ in the control of polyamine levels during embryonic development. By employing a novel in vivo method using Caenorhabditis elegans, we postulate that the OvAZ enters the secretory pathway. Even though the ODCs are absent in filarial parasites, OvAZ has the ability to bind to various ODCs, thereby demonstrating the functionality of the conserved AZ-binding domains. Finally, pull-down assays show an interaction between B. malayi AZ and the B. malayi ODC-like protein, indicating that the B. malayi ODC-like protein might function as an AZI. Taken together, our results suggest that filarial species do not possess the ODC while retaining the ODC-regulatory proteins AZ and AZI. It is tempting to speculate that both proteins are retained for the regulation of polyamine transport systems.


Assuntos
Brugia Malayi/enzimologia , Onchocerca volvulus/enzimologia , Ornitina Descarboxilase/deficiência , Proteínas/metabolismo , Animais , Centrifugação , Feminino , Masculino , Ligação Proteica , Ratos , Ratos Wistar
19.
Int J Mol Sci ; 14(2): 3395-439, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23389040

RESUMO

Infectious diseases caused by parasites are a major threat for the entire mankind, especially in the tropics. More than 1 billion people world-wide are directly exposed to tropical parasites such as the causative agents of trypanosomiasis, leishmaniasis, schistosomiasis, lymphatic filariasis and onchocerciasis, which represent a major health problem, particularly in impecunious areas. Unlike most antibiotics, there is no "general" antiparasitic drug available. Here, the selection of antiparasitic drugs varies between different organisms. Some of the currently available drugs are chemically de novo synthesized, however, the majority of drugs are derived from natural sources such as plants which have subsequently been chemically modified to warrant higher potency against these human pathogens. In this review article we will provide an overview of the current status of plant derived pharmaceuticals and their chemical modifications to target parasite-specific peculiarities in order to interfere with their proliferation in the human host.

20.
Acta Trop ; 124(1): 15-26, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22677600

RESUMO

Onchocerca volvulus is a human pathogenic filarial nematode causing chronic onchocerciasis, a disease characterized by chronic skin and eye lesions. Despite attempts to control this infection from many perspectives, it still remains a threat to public health because of adverse effects of available drugs and recent reports of drug resistance. Under control of an intact immune system, O. volvulus survives for a long time in the host by employing a variety of strategies including the utility of antioxidant enzymes. In the present study, we focus on the extracellular superoxide dismutase from O. volvulus (OvEC-SOD) found in the excretory/secretory products of adult worms. Contrary to previous studies, the OvEC-SOD was found to have a 19 amino acid long signal peptide that is cleaved off during the process of maturation. To validate this result, we designed a novel method based on Caenorhabditis elegans cup5(ar465) mutants to specifically evaluate signal peptide-mediated secretion of nematodal proteins. Following purification, the recombinant OvEC-SOD was active as a dimer. Site-directed mutagenesis of the three cysteines present in the OvEC-SOD shows that enzyme activity is markedly reduced in the Cys-192 mutant. A homology model of the OvEC-SOD underlines the importance of Cys-192 for the stabilization of the adjacent active site channel. The generation of a humoral immune response to secretory OvEC-SOD was indicated by demonstrating IgG reactivity in sera from patients infected with O. volvulus while the cross-reactivity of IgG in plasma samples from cows, infected with the most closely related parasite Onchocerca ochengi, occurred only marginally. High IgG1 and IgM titres were recorded in sera from mice infected with the filaria Litomosoides sigmodontis, however, low or no cellular proliferative responses were observed. Thus, the present data suggest that secretory OvEC-SOD is a target of the humoral immune response in human onchocerciasis and induced strongest IgG responses in hyperreactive onchocerciasis. Furthermore, humoral response during murine infection induced SOD-specific IgG that cross-reacted with OvEC-SOD.


Assuntos
Onchocerca volvulus/enzimologia , Superóxido Dismutase/metabolismo , Adulto , Substituição de Aminoácidos , Animais , Anticorpos Anti-Helmínticos/sangue , Caenorhabditis elegans , Domínio Catalítico , Reações Cruzadas , Modelos Animais de Doenças , Feminino , Filarioidea , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Nematoides , Onchocerca , Onchocerca volvulus/genética , Onchocerca volvulus/imunologia , Oncocercose/imunologia , Oncocercose/parasitologia , Oncocercose/patologia , Conformação Proteica , Multimerização Proteica , Sinais Direcionadores de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sigmodontinae , Superóxido Dismutase/genética , Superóxido Dismutase/imunologia , Superóxido Dismutase/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...